Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(12)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38530007

RESUMO

Pt-based alloys, such as Pt3Ni, are among the best electrocatalysts for oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells. Doping of PtNi alloys with Zr was shown to enhance the durability of the operating ORR catalysts. Rationalizing these observations is hindered by the absence of atomic-level data for these tri-metallic materials, even when not exposed to the fuel cell operation conditions. This study aims at understanding structure-property relations in Zr-doped PtNi nanoparticles as a key to their ORR function. In particular, we calculated, using a method based on density functional theory, the most stable chemical orderings of pristine and Zr-doped Pt3Ni particles containing over 400 atoms. We thus clarify (i) preferential location and charge states of Zr atoms in the Pt3Ni NPs; (ii) effect of doping Zr atoms on the stability of the Pt skin of the Pt3Ni NPs; (iii) charge redistribution induced by Zr dopants; (iv) layer-by-layer atomic ordering in the Pt3Ni/Zr NPs with the increasing Zr content; and (v) effect of Zr atoms on the adsorption energies of O and OH species as indicators of the ORR activity.

2.
J Phys Chem A ; 127(49): 10412-10424, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38039331

RESUMO

Plasmonic metal nanoparticles are efficient light harvesters with a myriad of sensing- and energy-related applications. For such applications, the optical properties of nanoparticles of metals such as Cu, Ag, and Au can be tuned by controlling the composition, particle size, and shape, but less is known about the effects of oxidation on the plasmon resonances. In this work, we elucidate the effects of O adsorption on the optical properties of Ag particles by evaluating the thermodynamic properties of O-decorated Ag particles with calculations based on the density functional theory and subsequently computing the photoabsorption spectra with a computationally efficient time-dependent density functional theory approach. We identify stable Ag nanoparticle structures with oxidized edges and a quenching of the plasmonic character of the metal particles upon oxidation and trace back this effect to the sp orbitals (or bands) of Ag particles being involved both in the plasmonic excitation and in the hybridization to form bonds with the adsorbed O atoms. Our work has important implications for the understanding and application of plasmonic metal nanoparticles and plasmon-mediated processes under oxidizing environments.

3.
J Phys Chem C Nanomater Interfaces ; 127(36): 17700-17710, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37736294

RESUMO

Electronic metal-support interactions affect the chemical and catalytic properties of metal particles supported on reducible metal oxides, but their characterization is challenging due to the complexity of the electronic structure of these systems. These interactions often involve different states with varying numbers and positions of strongly correlated d or f electrons and the corresponding polarons. In this work, we present an approach to characterize electronic metal-support interactions by means of computationally efficient density functional calculations within the projector augmented wave method. We describe Ce3+ cations with potentials that include a Ce4f electron in the frozen core, overcoming prevalent convergence and 4f electron localization issues. We systematically explore the stability and chemical properties of different electronic states for a Pt8/CeO2(111) model system, revealing the predominant effect of electronic metal-support interactions on Pt atoms located directly at the metal-oxide interface. Adsorption energies and the reactivity of these interface Pt atoms vary significantly upon donation of electrons to the oxide support, pointing to a strategy to selectively activate interfacial sites of metal particles supported on reducible metal oxides.

4.
J Chem Phys ; 157(9): 094709, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36075722

RESUMO

Nanostructured materials based on CeO2 and Pt play a fundamental role in catalyst design. However, their characterization is often challenging due to their structural complexity and the tendency of these materials to change under reaction conditions. In this work, we combine calculations based on the density functional theory, a machine-learning assisted global optimization method, and ab initio thermodynamics to characterize stable oxidation states of ceria-supported PtyOx particles under different environmental conditions. The collection of global minima structures for different stoichiometries resulting from the global optimization effort is used to assess the effect of temperature, oxygen pressure, and support interactions on the phase diagrams, oxidation states, and geometries of the PtyOx particles. We, thus, identify favored structural motifs and O:Pt ratios, revealing that oxidized states of freestanding and ceria-supported platinum particles are more stable than reduced ones under a wide range of conditions. These results indicate that studies rationalizing activity of ceria-supported Pt clusters must consider oxidized states and that previous understanding of such materials obtained only with fully reduced Pt clusters may be incomplete.

5.
Chem Mater ; 34(17): 7916-7936, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36117879

RESUMO

Understanding how reaction conditions affect metal-support interactions in catalytic materials is one of the most challenging tasks in heterogeneous catalysis research. Metal nanoparticles and their supports often undergo changes in structure and oxidation state when exposed to reactants, hindering a straightforward understanding of the structure-activity relations using only ex situ or ultrahigh vacuum techniques. Overcoming these limitations, we explored the metal-support interaction between gold nanoparticles and ceria supports in ultrahigh vacuum and after exposure to CO. A combination of in situ methods (on powder and model Au/CeO2 samples) and theoretical calculations was applied to investigate the gold/ceria interface and its reactivity toward CO exposure. X-ray photoelectron spectroscopy measurements rationalized by first-principles calculations reveal a distinctly inhomogeneous charge distribution, with Au+ atoms in contact with the ceria substrate and neutral Au0 atoms at the surface of the Au nanoparticles. Exposure to CO partially reduces the ceria substrate, leading to electron transfer to the supported Au nanoparticles. Transferred electrons can delocalize among the neutral Au atoms of the particle or contribute to forming inert Auδ- atoms near oxygen vacancies at the ceria surface. This charge redistribution is consistent with the evolution of the vibrational frequencies of CO adsorbed on Au particles obtained using diffuse reflectance infrared Fourier transform spectroscopy.

6.
ACS Catal ; 12(15): 9256-9269, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36718273

RESUMO

Carbon interaction with transition metal (TM) surfaces is a relevant topic in heterogeneous catalysis, either for its poisoning capability, for the recently attributed promoter role when incorporated in the subsurface, or for the formation of early TM carbides, which are increasingly used in catalysis. Herein, we present a high-throughput systematic study, adjoining thermodynamic plus kinetic evidence obtained by extensive density functional calculations on surface models (324 diffusion barriers located on 81 TM surfaces in total), which provides a navigation map of these interactions in a holistic fashion. Correlation between previously proposed electronic descriptors and ad/absorption energies has been tested, with the d-band center being found the most suitable one, although machine learning protocols also underscore the importance of the surface energy and the site coordination number. Descriptors have also been tested for diffusion barriers, with ad/absorption energies and the difference in energy between minima being the most appropriate ones. Furthermore, multivariable, polynomial, and random forest regressions show that both thermodynamic and kinetic data are better described when using a combination of different descriptors. Therefore, looking for a single perfect descriptor may not be the best quest, while combining different ones may be a better path to follow.

7.
J Phys Chem C Nanomater Interfaces ; 125(31): 17372-17384, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34476040

RESUMO

Bimetallic nanoparticles have a myriad of technological applications, but investigations of their chemical and physical properties are precluded due to their structural complexity. Here, the chemical ordering and optical properties of AgPd, AuPd, and AuPt nanoparticles have been studied computationally. One of the main aims was to clarify whether layered ordered phases similar to L11 one observed in the core of AgPt nanoparticles [Pirart J.; Nat. Commun.2019, 10, 1982] are also stabilized in other nanoalloys of coinage metals with platinum-group metals, or the remarkable ordering is a peculiarity only of AgPt nanoparticles. Furthermore, the effects of different chemical orderings and compositions of the nanoalloys on their optical properties have been explored. Particles with a truncated octahedral geometry containing 201 and 405 atoms have been modeled. For each particle, the studied stoichiometries of the Ag- or Au-rich compositions, ca. 4:1 for 201-atomic particles and ca. 3:1 for 405-atomic particles, corresponded to the layered structures L11 and L10 inside the monatomic coinage-metal skins. Density functional theory (DFT) calculations combined with a recently developed topological (TOP) approach [Kozlov S. M.; Chem. Sci.2015, 6, 3868-3880] have been performed to study the chemical ordering of the particles, whose optical properties have been investigated using the time-dependent DFT method. The obtained results revealed that the remarkable ordering L11 of inner atoms can be noticeably favored only in small AgPt particles and much less in AgPd ones, whereas this L11 ordering in analogous Au-containing nanoalloys is significantly less stable compared to other calculated lowest-energy orderings. Optical properties were found to be more dependent on the composition (concentration of two metals) than on the chemical ordering. Both Pt and Pd elements promote the quenching of the plasmon.

8.
Nanoscale ; 13(22): 10167-10180, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34075922

RESUMO

Nanomaterials based on MoS2 and related transition metal dichalcogenides (TMDCs) are remarkably versatile; MoS2 nanoparticles are proven catalysts for processes such as hydrodesulphurization and the hydrogen evolution reaction, and transition metal dichalcogenides in general have recently emerged as novel 2D components for nanoscale electronics and optoelectronics. The properties of such materials are intimately related to their structure and dimensionality. For example, only the edges exposed by MoS2 nanoparticles (NPs) are catalytically active, and extended MoS2 systems show different character (direct or indirect gap semiconducting, or metallic) depending on their thickness and crystallographic phase. In this work, we show how particle size and interaction with a metal surface affect the stability and properties of different MoS2 NPs and the resulting phase diagrams. By means of calculations based on the Density Functional Theory (DFT), we address how support interactions affect MoS2 nanoparticles of varying size, composition, and structure. We demonstrate that interaction with Au modifies the relative stability of the different nanoparticle types so that edge terminations and crystallographic phases that are metastable for free-standing nanoparticles and monolayers are expressed in the supported system. These support-effects are strongly size-dependent due to the mismatch between Au and MoS2 lattices, which explains experimentally observed transitions in the structural phases for supported MoS2 NPs. Accounting for vdW interactions and the contraction of the Au(111) surface underneath the MoS2 is further found to be necessary for quantitatively reproducing experimental results. We finally find that support-induced effects on the stability of nanoparticle structures are general to TMDC nanoparticles on metal surfaces, which we demonstrate also for MoS2 on Au(111), WS2 on Au(111), and WS2 on Ag(111). This work demonstrates how the properties of nanostructured transition metal dichalcogenides and similar layered systems can be modified by the choice of supporting metal.

9.
Phys Chem Chem Phys ; 21(25): 13462-13466, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31187827

RESUMO

Functionalization of graphene on Ir(111) is a promising route to modify graphene by chemical means in a controlled fashion at the nanoscale. Yet, the nature of such functionalized sp3 nanodots remains unknown. Density functional theory (DFT) calculations alone cannot differentiate between two plausible structures, namely true graphane and substrate stabilized graphane-like nanodots. These two structures, however, interact dramatically differently with the underlying substrate. Discriminating which type of nanodots forms on the surface is thus of paramount importance for the applications of such prepared nanostructures. By comparing X-ray standing wave measurements against theoretical model structures obtained by DFT calculations we are able to exclude the formation of true graphane nanodots and clearly show the formation graphane-like nanodots.

10.
J Phys Condens Matter ; 31(31): 315501, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30978711

RESUMO

The correct description of van der Waals (vdW) interaction forces is required for accurately describing dispersion bonded systems. Several approaches have been proposed to include London dispersion in density functional theory exchange-correlation functionals, where the family of so-called van der Waals (vdW-DF) exchange-correlation functionals have shown a better performance than local or semi local exchange-correlation functionals for describing molecular adsorption on metals. Despite the numerous benchmarks performed with these functionals, their performance in predicting bulk properties of transition metals has hitherto not been investigated in detail. We have therefore tested five vdW-DF exchange-correlation functionals, vdW-DF2, optPBE-vdW, BEEF-vdW, optB88-vdW and C09 x -vdW to assess their performance in the prediction of lattice constants, bulk moduli, cohesive energies and surface energies of bulk Ni, Cu, Rh, Pd, Ag, Ir, Pt and Au (in fcc crystal structure). These transition metals are commonly used for benchmarking density functionals because they are important for applications in catalysis. The results are compared with experimental data and the PBE exchange-correlation functional. We found that both the optB88-vdW and the C09 x -vdW exchange-correlation functionals estimate all properties with high accuracy, in better agreement with experimental data than PBE and other considered vdW functionals. The C09 x -vdW functional clearly outperforms all other exchange-correlation functionals for surface energies for the (1 1 1) termination of different metals. We have also evaluated the interatomic electron density emerging from different functionals, and concluded that the observed differences are a result of the predicted lattice parameter, rather than a direct consequence of the functional form. Plane-wave and real-space grid-based expansions of the electron density are also compared, revealing good agreement between the two approaches for lattice parameters, cohesive energies, and surface energies, but more severe differences in bulk moduli. On the basis of our results, we recommend using the C09 x -vdW for studying bulk properties and surface energies of transition metals.

11.
Phys Rev Lett ; 121(20): 206003, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30500259

RESUMO

We studied the interaction of water with the anatase TiO_{2}(001) surface by means of scanning tunneling microscopy, x-ray photoelectron spectroscopy, and density functional theory calculations. Water adsorbs dissociatively on the ridges of a (1×4) reconstructed surface, resulting in a (3×4) periodic structure of hydroxyl pairs. We observed this process at 120 K, and the created hydroxyls desorb from the surface by recombination to water, which occurs below 300 K. Our calculations reveal the water dissociation mechanism and uncover a very pronounced dependence on the coverage. This strong coverage dependence is explained through water-induced reconstruction on anatase TiO_{2}(001)-(1×4). The high intrinsic reactivity of the anatase TiO_{2}(001) surface towards water observed here is fundamentally different from that seen on other surfaces of titania and may explain its high catalytic activity in heterogeneous catalysis and photocatalysis.

12.
Phys Rev Lett ; 121(13): 136402, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30312046

RESUMO

The spin structure of the valence and conduction bands at the K[over ¯] and K[over ¯]^{'} valleys of single-layer WS_{2} on Au(111) is determined by spin- and angle-resolved photoemission and inverse photoemission. The bands confining the direct band gap of 1.98 eV are out-of-plane spin polarized with spin-dependent energy splittings of 417 meV in the valence band and 16 meV in the conduction band. The sequence of the spin-split bands is the same in the valence and in the conduction bands and opposite at the K[over ¯] and the K[over ¯]^{'} high-symmetry points. The first observation explains "dark" excitons discussed in optical experiments; the latter points to coupled spin and valley physics in electron transport. The experimentally observed band dispersions are discussed along with band structure calculations for a freestanding single layer and for a single layer on Au(111).

13.
Nat Commun ; 9(1): 2211, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880841

RESUMO

Hydrodesulfurization catalysis ensures upgrading and purification of fossil fuels to comply with increasingly strict regulations on S emissions. The future shift toward more diverse and lower-quality crude oil supplies, high in S content, requires attention to improvements of the complex sulfided CoMo catalyst based on a fundamental understanding of its working principles. In this study, we use scanning tunneling microscopy to directly visualize and quantify how reducing conditions transforms both cluster shapes and edge terminations in MoS2 and promoted CoMoS-type hydrodesulfurization catalysts. The reduced catalyst clusters are shown to be terminated with a fractional coverage of sulfur, representative of the catalyst in its active state. By adsorption of a proton-accepting molecular marker, we can furthermore directly evidence the presence of catalytically relevant S-H groups on the Co-promoted edge. The experimentally observed cluster structure is predicted by theory to be identical to the structure present under catalytic working conditions.

14.
Phys Chem Chem Phys ; 19(32): 21729-21738, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28776626

RESUMO

Doping oxide materials by inserting atoms of a different element in their lattices is a common procedure for modifying properties of the host oxide. Using catalytically active, yet expensive noble metals as dopants allows synthesizing materials with atomically dispersed metal atoms, which can become cost-efficient catalysts. The stability and chemical properties of the resulting materials depend on the structure of the host oxide and on the position of the dopant atoms in it. In the present work we analyze by means of density functional calculations the relative stability and redox properties of cerium dioxide (ceria) nanoparticles doped with atoms of four technologically relevant transition metals - Pt, Pd, Ni and Cu. Our calculations indicate that the dopants are most stable at surface positions of ceria nanoparticles, highlighting the role of under-coordinated sites in the preparation and characterization of doped nanostructured oxides. The energies of two catalytically important reduction reactions - the formation of oxygen vacancies and homolytic dissociative adsorption of H2 - are found to strongly depend on the position of the doping atoms in nanoparticulate ceria.

15.
ACS Nano ; 10(12): 10798-10807, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-28024374

RESUMO

Band gap engineering in hydrogen functionalized graphene is demonstrated by changing the symmetry of the functionalization structures. Small differences in hydrogen adsorbate binding energies on graphene on Ir(111) allow tailoring of highly periodic functionalization structures favoring one distinct region of the moiré supercell. Scanning tunneling microscopy and X-ray photoelectron spectroscopy measurements show that a highly periodic hydrogen functionalized graphene sheet can thus be prepared by controlling the sample temperature (Ts) during hydrogen functionalization. At deposition temperatures of Ts = 645 K and above, hydrogen adsorbs exclusively on the HCP regions of the graphene/Ir(111) moiré structure. This finding is rationalized in terms of a slight preference for hydrogen clusters in the HCP regions over the FCC regions, as found by density functional theory calculations. Angle-resolved photoemission spectroscopy measurements demonstrate that the preferential functionalization of just one region of the moiré supercell results in a band gap opening with very limited associated band broadening. Thus, hydrogenation at elevated sample temperatures provides a pathway to efficient band gap engineering in graphene via the selective functionalization of specific regions of the moiré structure.

19.
Faraday Discuss ; 188: 323-43, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27076269

RESUMO

Materials based on MoS2 are widely used as catalysts and their structure usually consists of single-layered MoS2 nanoparticles whose edges are known to constitute the catalytically active sites. Methods based on density functional theory are used in this work to calculate the electronic structure of representative computational models of MoS2 nanoparticles supported on Au(111). By considering nanoparticles with different edge-terminations, compositions, and sizes, we describe how the electronic structure, Mo3d core-level shifts, and chemical properties (i.e. H adsorption and S vacancy formation) depend on the MoS2 nanoparticle size and structure. In addition, site-specific properties, largely inaccessible when using only slab models of MoS2 edges, are reported, which reveal that the edge sites are not uniform along the nanoparticle and largely depend on the proximity to the corners of the triangular NPs, especially when interacting with a metallic support. Furthermore, a structural motif where H atoms adsorb favourably in a bridging position between two Mo atoms is proposed as an active site for the hydrogen evolution reaction.

20.
ACS Nano ; 9(9): 9322-30, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26203593

RESUMO

MoS2 nanoparticles are proven catalysts for processes such as hydrodesulfurization and hydrogen evolution, but unravelling their atomic-scale structure under catalytic working conditions has remained significantly challenging. Ambient pressure X-ray Photoelectron Spectroscopy (AP-XPS) allows us to follow in situ the formation of the catalytically relevant MoS2 edge sites in their active state. The XPS fingerprint is described by independent contributions to the Mo 3d core level spectrum whose relative intensity is sensitive to the thermodynamic conditions. Density Functional Theory (DFT) is used to model the triangular MoS2 particles on Au(111) and identify the particular sulphidation state of the edge sites. A consistent picture emerges in which the core level shifts for the edge Mo atoms evolve counterintuitively toward higher binding energies when the active edges are reduced. The shift is explained by a surprising alteration in the metallic character of the edge sites, which is a distinct spectroscopic signature of the MoS2 edges under working conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...